

Bilkent University

Department of Computer Engineering

Senior Design Project

Low-Level Design Report
Deepgame

Students
Betül Reyhan Uyanık

Mert Alp Taytak
Ömer Faruk Geredeli

Supervisor

Dr. Uğur Güdükbay

Jury Members
Prof. Dr. Özgür Ulusoy

Asst. Prof. Dr. Shervin Rahimzadeh Arashloo

Innovation Expert
Cem Çimenbiçer

October 5, 2020
This report is submitted to the Department of Computer Engineering of Bilkent University in
partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Table of Contents

1 Introduction 3

1.1 Object Design Trade-offs 3
1.1.1 Functionality vs Usability 3
1.1.2 Performance vs Privacy and Security 3
1.1.3 Performance vs Immersion 4

1.2 Interface Documentation Guidelines 4
1.3 Engineering Standards 4
1.4 Definitions, Acronyms, and Abbreviations 4

2 Packages 5
2.1 Feature Extractor Packages 6

2.1.1 Interface Layer Packages 7
2.1.1.1 Controller 7

2.1.2 Logic Layer Packages 8
2.1.2.1 Normalizer 8
2.1.2.2 Extractor 8
2.1.2.3 Encoder 9

2.1.3 Data Layer Packages 9
2.1.3.1 Raw Data 9
2.1.3.2 Processed Data 10

2.2 Feature Transferer Packages 11
2.2.1 Interface Layer Packages 12

2.2.1.1 Controller 12
2.2.2 Logic Layer Packages 13

2.2.2.1 Decoder 13
2.2.2.2 Transferer 14

2.2.3 Data Layer Packages 15
2.2.3.1 Feature Data 15
2.2.3.2 Game Data 16

3 Class Interfaces 17
3.1 Feature Extractor Classes 17

3.1.1 Interface Layer Classes 17
3.1.1.1 Controller 17

3.1.2 Logic Layer Classes 18
3.1.2.1 Normalizer 18
3.1.2.2 Extractor 19
3.1.2.3 Encoder 20

3.1.3 Data Layer Classes 20
3.1.3.1 Raw Data 20
3.1.3.2 Processed Data 21

3.2 Feature Transferer Classes 23

1

3.2.1 Interface Layer Classes 23
3.2.1.1 Controller 23

3.2.2 Logic Layer Classes 24
3.2.2.1 Decoder 24
3.2.2.2 Transferer 25

3.2.3 Data Layer Classes 26
3.2.3.1 Feature Data 26
3.2.3.2 Game Data 26

4 Glossary 28

5 References 29

2

1 Introduction
Video games are a form of entertainment enjoyed by many people on a multitude of
platforms. In various video game genres the player plays a character, where the character
becomes an extension of themselves. Naturally, this extension may take form as the
approximate replica of the player or a person of player’s choosing. In order to accommodate
this, game developers offer character customization options that have been getting more
and more intricate. However, evolving technology allows us to take this beyond what sliders,
preset options and limited degrees of freedom can achieve.

Another aspect to characterization in gameplay is dialog, or rather the voice of a
character. While story heavy video games include extensive dialog, other types of games
may include one liners to be thrown out according to a script to enhance the immersion.
Common point between all games with dialog is that they all offer pre-recorded, limited
number of voice packages. Once again, evolving technology allows us to take dialog
customization to another level.

The aforementioned evolving technology is the rise of deepfake algorithms. A new
class of algorithms dubbed “deepfake” makes use of deep learning to transfer likeness of
visuals and audio between persons within photos, audio recordings and videos [1].

Novelty, and the challenge, of our project is to apply deepfake algorithms to video
games [2]. The application of deepfake algorithms from real environments to virtual
environments is largely unexplored and there has not been a known video game application
so far. Our final goal is to create the framework software that can be integrated into video
games themselves that will enable the premise of our project.

Rest of this section discusses decisions concerning the overall goals of the project
and guidelines we used in the documentation and development of the project. The following
sections define the general structure of the program architecture and blocks that make up
the architecture.

1.1 Object Design Trade-offs

1.1.1 Functionality vs Usability
The project will be software that is intended to be integrated into other software. As a result,
our target user base is developers. This allows us to be more demanding of our users. Due
to the complex nature of our project, proper use of the product requires insight into the
theory behind the software. Because game developers are expected to be knowledgeable in
their domain, we can focus on functionality more than we focus on usability. Therefore, we
will prefer providing more functionality over making less functionality more usable.

1.1.2 Performance vs Privacy and Security
The project requires processing large amounts of biometric data. Fastest way of doing the
processing would be sending the data to external servers and processing the data there.

3

However, this creates privacy concerns and security risk. Seeing how gaming computers
would have powerful hardware, we can do the processing locally for a massive reduction in
privacy and security risks at the cost of a slight hit to the performance.

1.1.3 Performance vs Immersion
Immersion is the main goal of this project. However, achieving the best possible immersion
comes with a high cost in performance. We will focus on immersion over performance while
still maintaining a comfortably playable performance. For this purpose we can develop our
project with the target of better quality while providing options to reduce quality in favor of
more performance. This will enable the game developers and video game players to fine
tune the game to their taste.

1.2 Interface Documentation Guidelines
In this document, classes are documented with the following components:

1. Package Name: Name of the package the class belongs to.
2. Class Name: Name of the class.
3. Description: Summary of the purpose of the class.
4. Attributes: Public (“+”) and private (“-”) attributes of the class with their types.
5. Methods: Public (“+”), protected (“#”) and private (“-”) methods of the class with their

signatures.

As evident from above, the guidelines follow the UML principles [4].

1.3 Engineering Standards
In this document there are two standards followed. The first is the use of UML notation in our
diagrams. The second is the use of IEEE citation guidelines for our referencing and citations
[3].

1.4 Definitions, Acronyms, and Abbreviations

Deepgame Integrable software tool that helps model real persons in games.

Model Digital data representing the likeness of appearance or likeness
of voice of a person.

Feature Appearance or voice data that belongs to a specific person.

Feature Transfer Process of creating a game model from a feature model of a
person.

Feature Extraction Process of extracting features from photographs and recording of
a person.

Target Person to be modeled.

4

2 Packages
Because feature extraction capabilities of our project can be separated into a standalone
software to produce feature data that can be used across multiple games, we separate our
packages into two groups.

The purpose of this separation is to provide modularity where it is possible.
Moreover, the ability of separating feature extraction from game specific to standalone
further reduces the workload of game developers.

Note that due to the feature extractor and transferer being two parts of a whole they
share a common structure, sometimes to the point of seeming redundant.

5

2.1 Feature Extractor Packages
Following is the package diagram of feature extractor part of the project:

Figure 1. Extractor Packages Diagram

6

Note that due to limitations of our drawing software and our desire to lessen clutter in the
diagram we used improper notation. In the diagram above, straight arrows are used to
denote a class or classes in a package use the classes from the package or packages at the
end of the arrow.

The architecture featured here follows the guidelines of “Presentation - Logic - Data”

architecture. In absence of direct interaction with the software, we opted to call the
“Presentation Layer”, “Interface Layer” instead.

2.1.1 Interface Layer Packages
The interface layer consists of packages handling requests from the greater software to the
Deepgame API. Existence of the interface layer allows software developers to use
Deepgame Feature Extractor as a blackbox.

2.1.1.1 Controller

Figure 2. Extractor-Controller Package Diagram

The controller package contains classes to handle the requests of taking the raw data,
processing the data and producing feature data as a result. This is done through
instantiating new processors and moving the data through them.

7

2.1.2 Logic Layer Packages
The logic layer consists of packages that handle the stages of data processing.

2.1.2.1 Normalizer

Figure 3. Extractor-Normalizer Package Diagram

The normalizer package contains classes that are responsible for taking the raw data,
cleaning up the data and formatting the clean data into a format usable by the extractor.

2.1.2.2 Extractor

Figure 4. Extractor-Extractor Package Diagram

The extractor package contains classes that are responsible for taking the normalized data
and turning it into features usable by the feature transferer. For this purpose deep learning is
leveraged through the use of neural networks.

8

2.1.2.3 Encoder

Figure 5. Extractor-Encoder Package Diagram

The encoder package contains classes that are responsible for the finished feature data and
encoding it into storable, encrypted data to be later used by feature transferers.

2.1.3 Data Layer Packages
The data layer consists of packages that represent data in various stages from raw to
processed.

2.1.3.1 Raw Data

Figure 6. Extractor-Raw Data Package Diagram

The raw data package contains classes that represents raw audio, video and photograph
files.

9

2.1.3.2 Processed Data

Figure 7. Extractor-Processed Data Package Diagram

The processed data package contains classes that represent data in various stages of
processing such as denoised or normalized. Also, final products such as features in the form
of encoded neural networks are represented in this package as well.

10

2.2 Feature Transferer Packages
Following is the package diagram of feature transferer part of the project:

Figure 8. Transferer Packages Diagram

11

Once again, note that due to limitations of our drawing software and our desire to lessen
clutter in the diagram we used improper notation. In the diagram above, straight arrows are
used to denote a class or classes in a package use the classes from the package or
packages at the end of the arrow.

Similar to the feature extractor part, the architecture featured here follows the

guidelines of “Presentation - Logic - Data” architecture. In absence of direct interaction with
the software, once again we opted to call the “Presentation Layer”, “Interface Layer” instead.

2.2.1 Interface Layer Packages
The interface layer consists of packages handling requests from the greater software to the
Deepgame API. Existence of the interface layer allows software developers to use
Deepgame Feature Extractor as a blackbox.

2.2.1.1 Controller

Figure 9. Transferer-Controller Package Diagram

The controller package contains classes to handle the requests of taking processed feature
data along with game data and producing a model to be rendered by the game.

12

2.2.2 Logic Layer Packages
The logic layer consists of packages handling the use of feature data and game data to
produce a game model with transferred features.

2.2.2.1 Decoder

Figure 10. Transferer-Decoder Package Diagram

The decoder package contains classes that take feature data encoded by a feature extractor
and decodes the data into data usable by the feature transferer.

13

2.2.2.2 Transferer

Figure 11. Transferer-Transferer Package Diagram

The transferer package contains classes that take feature data together with game data and
produces a game model through the application of deepfake techniques [5].

14

2.2.3 Data Layer Packages
The data layer consists of packages that represent data from the feature extractor and the
game integrating the Deepgame software. Then, these packages can be used by the rest of
the feature transferer in a recognizable format.

2.2.3.1 Feature Data

Figure 12. Transferer-Feature Data Package Diagram

The feature data package contains relevant classes from the processed data package of the
feature extractor. That is because the extractor and the transferer are separate software but
the data format is shared between these two parts.

15

2.2.3.2 Game Data

Figure 13. Transferer-Game Data Package Diagram

The game data package contains classes that define the data formats for the games that
integrate the Deepgame software. Since Deepgame requires input from the game and
produces an output to the game, a common data format is necessary.

16

3 Class Interfaces

3.1 Feature Extractor Classes

3.1.1 Interface Layer Classes

3.1.1.1 Controller

Package Name Controller

Class Name StorageManager

Description

Manages the storage and retrieval of files.

Attributes

None.

Methods

+loadFile(path: Path): File​ Opens specified file.
+storeFile(file: File): void​ Closes and saves specified file.

Package Name Controller

Class Name ProcessingManager

Description

Provides methods for the processing of data.

Attributes

-rawPhotographs: ArrayList<RawPhotograph>
-rawRecordings: ArrayList<RawRecording>
-intermediatePhotographs: ArrayList<NormalizedPhotograph>
-intermediateRecordings: ArrayList<NormalizedRecording>
-visualProcessResult: VisualFeatures
-auditoryProcessResult: AuditoryFeatures

Methods

+ProcessingManager(rawPhotographs: ArrayList<File>, rawRecordings:
ArrayList<File>): ProcessingManager​ Constructor.
+normalizePhotographs(): void ​Takes photographs through normalization.
+normalizeRecordings(): void​ Takes recordings through normalization.
+extractPhotographs(): void​ Takes normalized photographs through extraction.
+extractRecordings(): void​ Takes normalized recordings through extraction.

17

+encodePhotographs(): void ​Encodes extracts from photographs.
+encodeRecordings(): void​ Encodes extracts from recordings.
+getVisualEncoding(): VisualFeatures​ Gets visual extraction result.
+getAuditoryEncoding(): AuditoryFeatures​ Gets auditory extraction result.

3.1.2 Logic Layer Classes

3.1.2.1 Normalizer

Package Name Normalizer

Class Name Denoiser

Description

Provides methods for denoising data through signal processing.

Attributes

None.

Methods

+denoisePhotograph(photo: RawPhotograph): NormalizedPhotograph
+denoiseRecording(recording: RawRecording): NormalizedRecording

Package Name Normalizer

Class Name Formatter

Description

Provides methods for formatting denoised data.

Attributes

None.

Methods

+formatPhotograph(photo: NormalizedPhotograph): NormalizedPhotograph
+formatRecording(recording: NormalizedRecording): NormalizedRecording

18

3.1.2.2 Extractor

Package Name Extractor

Class Name VisualExtractor

Description

Takes an array of normalized visual data and extracts visual features from them.

Attributes

-data: ArrayList<NormalizedPhotograph>
-model: Array<Array<Double>>

Methods

+VisualExtractor(data: ArrayList<NormalizedPhotograph>): VisualExtractor
Constructor.
-trainStep(): double​ Goes through one iteration of training, returns error amount.
+train(): void ​Goes through the entire neural network training.
+getModel(): Array<Array<Double>>​ Returns the inner model.

Package Name Extractor

Class Name AuditoryExtractor

Description

Takes an array of normalized auditory data and extracts visual features from them.

Attributes

-data: ArrayList<NormalizedRecording>
-model: Array<Array<Double>>

Methods

+AuditoryExtractor(data: ArrayList<NormalizedRecording>): AuditoryExtractor
Constructor.
-trainStep(): double​ Goes through one iteration of training, returns error amount.
+train(): void ​Goes through the entire neural network training.
+getModel(): Array<Array<Double>>​ Returns the inner model.

19

3.1.2.3 Encoder

Package Name Encoder

Class Name VisualEncoder

Description

Takes the model provided by the VisualExtractor and encodes it into a format usable by
Deepgame feature transferers.

Attributes

None.

Methods

+encode(model: Array<Array<Double>>): VisualFeatures

Package Name Encoder

Class Name AuditoryEncoder

Description

Takes the model provided by the AuditoryExtractor and encodes it into a format usable by
Deepgame feature transferers.

Attributes

None.

Methods

+encode(model: Array<Array<Double>>): AuditoryFeatures

3.1.3 Data Layer Classes

3.1.3.1 Raw Data

Package Name Raw Data

Class Name RawPhotograph

Description

File containing an unprocessed photograph.

Attributes

-photograph: File
-height: int

20

-width: int

Methods

+RawPhotograph(file: File, height: int, width: int): RawPhotograph​ Constructor.
+getPhotograph(): File​ Photograph getter.
+getHeight(): int​ Pixel height of the photograph.
+getWidth(): int​ Pixel width of the photograph.

Package Name Raw Data

Class Name RawRecording

Description

File containing an unprocessed recording.

Attributes

-recording: File
-length: int

Methods

+RawRecording(file: File, length: int): RawRecording​ Constructor.
+getRecording(): File​ Recording getter.
+getLength(): int​ Duration of the recording in seconds.

3.1.3.2 Processed Data

Package Name Processed Data

Class Name NormalizedPhotograph

Description

File containing a photograph after normalization.

Attributes

-photograph: File
-height: int
-width: int

Methods

+NormalizedPhotograph(photograph: RawPhotograph, height: int, width: int):
NormalizedPhotograph​ Constructor.
+getPhotograph(): File​ Photograph getter.
+getHeight(): int​ Pixel height of the photograph.
+getWidth(): int​ Pixel width of the photograph.

21

Package Name Processed Data

Class Name NormalizedRecording

Description

File containing a recording after normalization.

Attributes

-recording: File
-length: int

Methods

+NormalizedRecording(recording: RawRecording, length: int):
NormalizedRecording​ Constructor.
+getRecording(): File​ Recording getter.
+getLength(): int​ Duration of the recording in seconds.

Package Name Processed Data

Class Name VisualFeatures

Description

Neural network model trained from visual data encoded in a data package.

Attributes

-model: Array<Array<Double>>

Methods

+VisualFeatures(model: Array<Array<Double>>): VisualFeatures​ Constructor.
+toFile(): File​ Method to create a file encoding of the model.

Package Name Processed Data

Class Name AuditoryFeatures

Description

Neural network model trained from auditory data encoded in a data package.

Attributes

-model: Array<Array<Double>>

22

Methods

+AuditoryFeatures(model: Array<Array<Double>>): AuditoryFeatures​ Constructor.
+toFile(): File​ Method to create a file encoding of the model.

3.2 Feature Transferer Classes

3.2.1 Interface Layer Classes

3.2.1.1 Controller

Package Name Controller

Class Name StorageManager

Description

Manages the storage and retrieval of files.

Attributes

None.

Methods

+loadFile(path: Path): File​ Opens specified file.
+storeFile(file: File): void​ Closes and saves specified file.

Package Name Controller

Class Name VisualTransferManager

Description

Makes up the interface between Deepgame Visual Engine and the game integrating the
software. Constructed by feeding a premade feature data, this class is fed game visual
data and returns visuals to be rendered that have the likeness of the target from the
feature data.

Attributes

-features: VisualFeatures

Methods

+VisualTransferManager(features: VisualFeatures): VisualTransferManager
Constructor.
+transfer(model: VisualModel): VisualModel ​Takes visuals from game and returns new
game visuals with target’s features transferred.

23

Package Name Controller

Class Name AuditoryTransferManager

Description

Makes up the interface between Deepgame Auditory Engine and the game integrating the
software. Constructed by feeding a premade feature data, this class is fed game voice
lines and returns lines that sound like they were spoken by the target person from the
feature data.

Attributes

-features: VisualFeatures

Methods

+AuditoryTransferManager(features: AuditoryFeatures): AuditoryTransferManager
Constructor.
+transfer(model: AuditoryModel): AuditoryModel ​Takes voice lines from the game and
returns new voice lines with the target's features transferred.

3.2.2 Logic Layer Classes

3.2.2.1 Decoder

Package Name Decoder

Class Name VisualDecoder

Description

Takes the encoded data produced by the feature extractor and decodes it into something
usable by the feature transferer.

Attributes

None.

Methods

+decode(data: VisualFeatures): Array<Array<Double>>

Package Name Decoder

Class Name AuditoryDecoder

Description

Takes the encoded data produced by the feature extractor and decodes it into something

24

usable by the feature transferer.

Attributes

None.

Methods

+decode(data: AuditoryFeatures): Array<Array<Double>>

3.2.2.2 Transferer

Package Name Transferer

Class Name VisualTransferer

Description

Keeps an internal neural network model of the target person and transfers the target’s
features to the input game visual data.

Attributes

-model: Array<Array<Double>>

Methods

+VisualTransferer(features: VisualFeatures): VisualTransferer​ Constructor.
+transfer(visual: VisualModel): VisualModel ​Takes unprocessed game visual and
returns it after transferring features onto it.

Package Name Transferer

Class Name AuditoryTransferer

Description

Keeps an internal neural network model of the target person and transfers the target’s
features to the input game auditory data.

Attributes

-model: Array<Array<Double>>

Methods

+AuditoryTransferer(features: AuditoryFeatures): AuditoryTransferer​ Constructor.
+transfer(audio: AuditoryModel): AuditoryModel ​Takes an unprocessed voice line and
returns it after transferring features onto it.

25

3.2.3 Data Layer Classes

3.2.3.1 Feature Data

Package Name Feature Data

Class Name VisualFeatures

Description

Neural network model trained from visual data encoded in a data package.

Attributes

-model: Array<Array<Double>>

Methods

+VisualFeatures(model: File): VisualFeatures​ Constructor.
+getModel(): Array<Array<Double>> ​Gets the model from within the object.

Package Name Feature Data

Class Name AuditoryFeatures

Description

Neural network model trained from auditory data encoded in a data package.

Attributes

-model: Array<Array<Double>>

Methods

+AuditoryFeatures(model: File): AuditoryFeatures​ Constructor.
+getModel(): Array<Array<Double>> ​Gets the model from within the object.

3.2.3.2 Game Data

Package Name Game Data

Class Name VisualModel

Description

Standard format for the games feeding Deepgame’s feature transferer visual data. Data is
both input and output as this class. Conversion between this format and the game's
internal format is left to the game developers.

There are no setters because this class is meant to be immutable.

26

Attributes

-image: Array<Array<Array<Double>>>
-interestPoints: Map<String, Array<Array<Int>>>

Methods

+VisualModel(image: Array<Array<Array<Double>>>, points: Map<String,
Array<Array<Int>>): VisualModel ​Constructor.
+getImage(): Array<Array<Array<Double>>>​ Returns the image array.
+getInterestPoints(): Map<String, Array<Array<Int>>> ​Returns interest points.

Package Name Game Data

Class Name AuditoryModel

Description

Standard format for the games feeding Deepgame’s feature transferer auditory data. Data
is both input and output as this class. Conversion between this format and the game's
internal format is left to the game developers.

There are no setters because this class is meant to be immutable.

Attributes

-sound: Array<Double>

Methods

+AuditoryModel(sound: Array<Double>): AuditoryModel​ Constructor.
+getSound(): Array<Double> ​Returns the sound data.

27

4 Glossary
Following is the information about the pages where these terms are used.

Controller 8,13,17,23
Deepfake 3,14
Extractor 6,8,9,10,11,13,14,15,16,17,18,19,23
Normalizer 9,18
Transferer 6,9,10,11,12,13,14,15,16,19,20,23,24,25,26,27
UML 4

28

5 References
[1] Li, Y. and Lyu, S., 2020. [online] Openaccess.thecvf.com. Available at:

<https://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Li_E
xposing_DeepFake_Videos_By_Detecting_Face_Warping_Artifacts_CVPRW_2019_pap
er.pdf> [Accessed 5 October 2020].

[2] D. Güera and E. J. Delp, "Deepfake Video Detection Using Recurrent Neural Networks,"

2018 15th IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), Auckland, New Zealand, 2018, pp. 1-6, doi:
10.1109/AVSS.2018.8639163.

[3] Libraryguides.vu.edu.au. 2020. ​Library Guides: IEEE Referencing: Getting Started With

IEEE Referencing​. [online] Available at:
<https://libraryguides.vu.edu.au/ieeereferencing/gettingstarted#:~:text=%E2%80%9CIEE
E%E2%80%9D%20stands%20for%20The%20Institute,paper%2C%20provided%20in%2
0square%20brackets.&text=This%20is%20known%20as%20an,of%20the%20work%20ar
e%20provided.> [Accessed 5 October 2020].

[4] Agilemodeling.com. 2020. ​Introduction To The Diagrams Of UML 2.X​. [online] Available

at:
<http://agilemodeling.com/essays/umlDiagrams.htm#:~:text=Although%20there%20is%2
0far%20more,a%20system%20or%20business%20process.> [Accessed 5 October
2020].

[5] Nguyen, Thanh Thi, et al. “Deep Learning for Deepfakes Creation and Detection: A

Survey.” ​Https://Arxiv.org​, 28 July 2020, arxiv.org/pdf/1909.11573.pdf.

29

